
World Models for Multi-task Robotic Pretraining

Jared Mejia
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213
jamejia@cs.cmu.edu

Mohan Kumar
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

mohankus@cs.cmu.edu

1 Introduction

Robotic manipulation has made significant progress in recent years with various methods showcasing
the capability of current systems to achieve success on specialized tasks provided there is adequate
data [4, 13, 1, 2, 53]. However, the current paradigm requires collecting entirely new data and training
another policy from scratch for each new task, making it difficult to develop fully autonomous agents
capable of performing a wide range of tasks in any real-world setting.

Ideally, robotic agents would instead exhibit positive transfer [5], whereby prior experiences and
transferable skills can facilitate learning and performance on new tasks. Humans are known to benefit
most from positive transfer in scenarios where there is a certain degree of similarity or overlap between
two tasks or domains, allowing sharing of knowledge between tasks and enhanced performance in
novel situations [22, 42, 8]. Various methods in the fields of natural language processing [39, 46, 36]
and computer vision have already benefited greatly from the shared structure between related tasks in
the respective fields, allowing them to leverage massive amounts of data not entirely specific to the
task of interest. While the tasks of these fields may be more analogous to the high-level cognitive
tasks from psychology literature, we would expect there to be similar if not greater potential for
positive transfer between low-level control tasks in manipulation, as all such tasks adhere to the
natural laws of physics.

Multitask learning approaches that leverage diverse data sources have been explored in various ways.
Some researchers have focused on optimizing the data collection process, aiming to efficiently gather
large-scale data and using simple behavior cloning policies for downstream tasks (e.g., [49, 3, 7].
Although performance in robotic manipulation tasks seems to scale with the amount of data, it is
likely that additional methods could be combined with this approach to further benefit from the
collected datasets.

Another recent trend in multitask robotic learning has focused on obtaining a universal pretrained
visual representation (PVR) [35, 31], with the goal of using a single visual encoder for any downstream
robot learning task. However, current PVRs do not always improve performance, and recent work
has shown that training from scratch often outperforms fixed pretrained visual backbones [20].
Furthermore, current approaches to PVRs typically use egocentric videos of humans acting in the
real world as their primary source of data [11, 35, 31]. Consequently, there is a large domain shift
when these encoders are applied to robotic tasks, and the representations may not necessarily encode
reasoning about the consequences of robot actions. To address this problem, recent work (PTR) has
used end-to-end offline RL for both pre-training and fine-tuning. Nevertheless, offline RL methods
are known to be unstable to train and highly sensitive to hyperparameters, particularly when using
images as observations.

In this work, we aim to devise a method for learning to multitask representations while addressing
both the issue of domain shift, as is the main problem with PVRs, and training instability, the
main shortcoming of end-to-end policies. Our key insight is that world models [15, 16] are a
mechanism with the potential for learning generalizable multi-task representations that reason about
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the consequences of an agent’s actions. While world models have for the most part only been applied
in the online learning setting [15, 18], we demonstrate their applicability in the offline setting as
well. Our method allows us to learn a policy with either imitation learning or offline RL methods
using fixed representations obtained from our world model for image inputs and conditioning on task
identifiers. At test time, we combine our frozen pretrained world model with the learned policy and
perform rollouts by updating the belief and state of world model at each timestep and passing it as
input to the policy. Our results demonstrate that multi-task world model pretraining achieves positive
transfer, improving the overall success rate across all tasks in comparison with single-task policies,
and outperforming equivalent end-to-end multi-task policies.

2 Related Work and Background

Representation Learning in Robotics A variety of approaches have been taken to address the
problem of general representation learning from images for robotic manipulation. The two main
paradigms consist of learning representations from entirely in-domain data or making use of large
amounts of unrelated task data. The methods that fall into the first category generally make use
of data augmentation or contrastive learning [28, 26, 37, 40]. Prior work has already utilized the
learning of latent space models for representation learning [10, 17, 15, 12], however, most of these
approaches have only been applied in the online model-based RL setting. To our knowledge, our
method is the first attempt to apply learned dynamics models for multi-task representation learning in
the offline setting.

The second class of representation learning methods has focused mostly on scaling the pretraining
to large datasets. The idea is that with enough diversity and scale of the data, the domain gap will
be diminished and a universal representation will emerge. [48, 45, 23, 44]. More recently, several
works have aimed to make use of egocentric videos of humans acting in diverse environments, in an
attempt to lessen the domain shift between pretraining data and robotic data [35, 30, 31]. Despite
these efforts there remains no universal pretrained representation that outperforms all others on any
given downstream task, and recent work has shown that learning a robot policy entirely from scratch
often outperforms learning from fixed pretrained representations [20].

World Models World models [12, 15, 16, 18, 19] have proven to be an effective approach to data-
efficient reinforcement learning in simulation and, more recently, in real-world robotic environments
for locomotion and manipulation [47]. With only a small amount of real-world interaction, learned
world models enable planning and behavior learning by predicting the future states and rewards that
would result from taking certain actions [6, 47]. As world models implicitly encapsulate knowledge
about the physical dynamics of an environment, they align well with the motivation of making use
of large amounts of multi-task data and prior works have explored learning a dynamics model in a
self-supervised manner through environment interactions that generalizes to diverse downstream tasks
and objects [6, 43, 34, 33]. Furthermore, recent work has applied this notion of world modesls to
static datasets in the offline RL setting [50, 41]. Whereas current model-based offline RL approaches
[50, 41, 52, 24] learn individual dynamics models for each task, we aim to learn a shared dynamics
model across all tasks in our experiments. World models have been applied to the offline RL setting
(COMBO, LOMPO), however, they struggle with the problem of overestimating the values of state-
action pairs—a fundamental problem of offline RL that is exacerbated when the replay buffer is
mixed with imagined rollout transitions from the learned model. Our method aims to circumvent
this issue by only using the learned world model for encoding our offline data, rather than generating
additional data. The problem of estimating values of state-action pairs in the support of the offline
data is offloaded to IQL [25], a method which never needs to evaluate actions outside of the dataset
by treating the state value function as a random variable with randomness determined by action and
taking a state conditional expectile of the random variable to estimate the value of a state.

3 Methods

3.1 Approach

Our approach to learning from pixels in multitask robotic settings involves decoupling representation
learning from policy learning. In particular, we learn a shared world model across all tasks in our
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offline data. We then freeze our world model and save the latent state representation generated by our
world model based on the pixel observations in our dataset. We use these latent representations to
compose our observations and learn an MLP policy from the embeddings. During inference time, we
use the world model to encode the incoming image and update the belief, and then pass the latent
representation to the policy.

3.1.1 Multi-task offline World Model pre-training

We first learn a single World Model for all tasks i ∈ Ttrain with the Recurrent State-Space Model
(RSSM) [[15]], using CNNs [[29]] for the image encoder and decoder:

Image encoder: ht = Eθ(ot)

Inference model: st ∼ qθ(st|ht, st−1, at−1)

Latent transition model: st ∼ T̂θ(st|st−1, at−1)

Reward predictor: rt ∼ pθ(rt|st)
Image decoder: ot ∼ Dθ(ot|st)

We follow the latent space representation from [15] st = [dt, zt] consisting of deterministic dt and a
sampled stochastic representation zt :

Deterministic State Model: dt = fθ(dt−1, zt−1, at−1)

Stochastic Inference Model: zt ∼ qθ(zt|ht, dt)

We follow [15] in optimizing the components jointly by maximizing the variational lower bound
which can be shown to be decomposed into reconstruction terms for the observations and rewards
and a KL regularizer:

LREC = EP

[∑
t

(
Lt
O + Lt

R + Lt
D

)]
+ c

Lt
R = ln qθ(rt|st) Lt

O = lnDθ(ot|st)
Lt
D = −βKL (pθ(st|st−1, at−1, ot)||qθ(st|st−1, at−1))

We also experimented with a variant of the state encoder and decoder using both images and the
robot’s proprioceptive state. In this variant, we encode the image with the same image encoder Eθ,
concatenate the proprioceptive state with the encoded image, and pass this through a 2-layer MLP,
using the resultant vector as the new ht. Similarly, we modified the decoder to reconstruct both the
proprioceptive state and the pixels of the original input image. A priori, the idea that passing more
state information to the model would result in a better representation seemed reasonable. However,
we found that the additional loss of reconstructing the proprioceptive state appeared to be too strong
of a signal, leading to the latent model effectively overfitting to the proprioceptive state as evidenced
quantitatively by the increased model reward loss as well as qualitatively in the resultant generated
imagined trajectories. These results suggest that for manipulation tasks, learning the dynamics
directly from pixels alone yields a more robust and generalizable representation and dynamics model.
For this reason, we chose not to condition any of the world model components on the task identifier
either.

Implementation details We build on an implementation of Dreamer [15] from TorchRL [38] to
learn our world model. We train a single online SAC [14] agent from the MT10 Metaworld benchmark
[51] garage implementation [9] and perform rollouts in the MT10 environments, collecting a total of
130 successful trajectories from 6 different environments with 6-DOF action space. We provide more
details on the environments in the Results section.

While training the world model, we sample a batch of 256 sub-trajectories at random, where each
sub-trajectory has length 25 environment steps. We use a state dimension of size 256 for dt, and a
belief dimension of size 256 for zt, resulting in a latent state of size 512. We train and save the model
after 3,000 optimization iterations, taking about 90 minutes on a NVIDIA GeForce RTX 3080 Ti.
We then reiterate through all of the trajectories, pass them through the world model, and save the
resultant latent space representation st = [dt, zt] for each timestep t.
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Figure 1: Our 6 evaluation tasks from the Metaworld benchmark [51]

3.1.2 Multitask offline policy learning

Once we have the latent state representation for all timesteps for our multi-task data, we concatenate
this state with a one-hot encoded task-identifier as well as a 4-dimensional vector consisting of the
Cartesian end effector coordinates and a measurement of how open the gripper is. We learn both a
multitask offline RL policy and a multitask behavior cloning policy using the concatenated vectors as
observations.

Multitask offline RL policy We use IQL [25] as the method for learning our multitask offline
RL policy. We build on an implementation of IQL from TorchRL [38]. The actor, critic, and value
networks are all 2 layer MLPs. The actor parameterizes a multivariate Gaussian distribution with
a diagonal covariance matrix and dimension equal to the action dimension. We use dropout (cite
dropout) equal to 0.1 for the actor network. We use an inverse temperature β = 0.5 and an expectile
τ = 0.7. We sample batches of size 256 and train for 300,000 optimization steps which takes
approximately 80 minutes on a NVIDIA GeForce RTX 3080 Ti.

Multitask BC policy Our BC policy is a 2-layer MLP similar to the IQL networks except its
output dimension is equal to the action dimension and it is trained to regress on the actions from the
demonstration data with a mean-squared error MSE objective. The BC network has a dropout value
of 0.1. We use only 150,000 optimization steps to prevent overfitting which takes just 10 minutes on
a NVIDIA GeForce RTX 3080 Ti.

3.2 Baselines

IQL End-to-End We train one IQL agent end-to-end (E2E) for each individual environment and a
single IQL E2E agent across all tasks. For all IQL E2E agents, we encode visual inputs in a similar
manner to PTR [27]. In particular, we use a CNN with group normalization layers [47, 21], and
learned spatial embeddings [27], the latter meant to help stabilize the training of Q-functions from
images in offline RL. We then concatenate the encoded image with the state vector and pass the
concatenated input to an MLP. The state vector consists of the 4-dimensional state, as well as the
one-hot task identifier for the multitask agent.

BC End-to-End We train one BC E2E agent for each individual environment and a single BC E2E
agent across all tasks. We use the same architecture as the IQL E2E actor-network, except the BC
agents are trained to regress on actions from the demonstration data with an MSE objective.

4 Experiments and Results

The goal of our experiments is to determine if: (a) positive transfer can be achieved for policies
by training on multiple tasks and (b) using World Models for learning visual representations from
multi-task data leads to better policies in comparison with training end-to-end or using static image
representations such as R3M.
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4.1 Offline Data

Our offline dataset consists of successful demonstrations from 130 rollouts in 6 different MT10
Metaworld environments, totaling 780 trajectories. Each of the environments consists of a Sawywer
Robot Arm with a different task specification for each environment. Each environment has 50
variations of the starting state of the environment and the goal location or object. We train an
MTSAC agent from the original Metaworld paper [51] as implemented in [9] on 10 variations of
the environment. We then performed rollouts with the MTSAC agent on the 10 variations of the
environment and collect 130 successful demonstrations total per environment.

4.2 Evaluation

For evaluation, we perform a single rollout of each trained agent on every variation of all 6 envi-
ronments, totaling 300 rollouts per agent. Note that this includes at least 40 variations of every
environment guaranteed to not be seen in the offline data, making the evaluation not only a test of the
performance between tasks but also the performance with deviations from the training data within the
same environments. We record statistics of the reward and success rates on each environment for
every agent. The results are shown in Table 1

Table 1: Task performance for six different tasks using Multitask from Scratch, Individual experiment
methods, and Multitask with world model. Mean and standard deviation are shown for each task and
experiment method combination.

Task Multitask from scratch Individual Multitask World Model (Ours)
IQL BC IQL BC IQL BC

button-press-topdown-v2 0.04 0.12 0.14 0.32 0.2 0.3
door-open-v2 0.42 0.7 1 0.98 0.92 0.9
drawer-open-v2 0 0.02 0 0.38 0.74 0.82
reach-v2 0.04 0.24 0.94 0.26 0.22 0.2
window-close-v2 0.28 0.5 0.42 0.84 0.96 1
window-open-v2 0.08 0.4 0.72 0.64 0.84 0.72

Overall Success Rate 0.1433 0.33 0.5367 0.5733 0.6466 0.6567

4.3 Results

There are a few takeaways to be made from the results in Table 1. We first note that the world model
for both IQL and BC only uses sparse 0/1 rewards during training, as does the multitask IQL that we
use together with the world model. In contrast, IQL multitask from scratch and individual IQL uses
dense rewards during training, which may be unavailable in real-world offline datasets.

We see that the performance of IQL uniformly increases between training multitask IQL from scratch
and training multitask IQL using World Model pretraining and representations during rollouts. This
suggests that in multitask settings, our world model pretraining and representations do lead to an
increase in performance. Similar results are shown for multitask BC with the world model, where
there is only a single task in which the multitask BC trained from scratch outperforms the multitask
BC with the world model.

We see that across most tasks, the performance of the multitask model is competitive with the models
trained on a single environment, suggesting that no significant negative transfer is occurring from our
method in multitask training. Furthermore, the overall success rate between the multitask world model
approaches significantly improves over the multitask from scratch approaches, and substantially
improves over the specialized agents. Importantly, we note that shared world model representations
leads to a significant increase in the drawer-open-v2 task, suggesting that for difficult tasks, using a
shared learned dynamics model may allow for knowledge transfer from other tasks which can prove
to be useful for the task at hand.

Finally, we note that there is little difference between the overall success rates between IQL and BC,
despite the fact that we are learning from near optimal demonstrations and using multitask data. This
is in contrast to results from prior works that either claim that BC significantly outperforms offline
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RL with optimal demonstrations [32] or offline RL outperforms BC in multitask pretraining regimes
[27]. Here, it appears that the factor that matters most is the method of representation learning.

5 Discussion

We present an approach to learning multitask representations using shared world models across tasks.
Our experiments demonstrate strong evidence of positive benefits from learning a shared world model
across tasks and decoupling representation learning from policy learning. We hope to perform more
extensive comparisons between our approach and other methods of learning a pretrained visualization
in future work. As our current experiments only consist of expert data, we additionally hope to extend
our experiments to few-shot learning settings in which we only have access to a small amount of
data for a target task. We also plan on testing our approach in settings for which we have access to a
large amount of diverse suboptimal data, as intuitively we would expect a learned dynamics model
to improve with more data, regardless of whether the data is optimal or not. Finally, we hope to
demonstrate the effectiveness of our method in real-world robotic settings and settings where we do
not have access to action annotations, such as human videos.
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